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Abstract. We investigate the cause of the unusually strong
semiannual variation of geomagnetic activity observed in
the solar minimum years of 1954 and 1996. For 1996 we
separate the contributions of the three classical modulation
mechanisms (axial, equinoctial, and Russell-McPherron) to
the six-month wave in theaam index and find that all three
contribute about equally. This is in contrast to the longer
run of geomagnetic activity (1868–1998) over which the
equinoctial effect accounts for∼70% of the semiannual vari-
ation. For both 1954 and 1996, we show that the Russell-
McPherron effect was enhanced by the Rosenberg-Coleman
effect (an axial polarity effect) which increased the amount of
the negative (toward Sun) [positive (away from Sun)] polar-
ity field observed during the first [second] half of the year;
such fields yield a southward component in GSM coordi-
nates. Because this favourable condition occurs only for al-
ternate solar cycles, the marked semiannual variation in 1954
and 1996 is a manifestation of the 22-year cycle of geomag-
netic activity. The 11-year evolution of the heliospheric cur-
rent sheet (HCS) also contributes to the strong six-month
wave during these years. At solar minimum, the streamer
belt at the base of the HCS is located near the solar equa-
tor, permitting easier access to high speed streams from po-
lar coronal holes when the Earth is at its highest heliographic
latitudes in March and September. Such an axial variation in
solar wind speed was observed for 1996 and is inferred for
1954.

Key words. Magnetosphere (solar wind – magnetosphere
interactions; storms and substorms)

1 Introduction

The cause of the semiannual variation of geomagnetic activ-
ity, characterized by stronger and more frequent storms in
spring/fall vs. summer/winter, is a long-standing question
(e.g. Sabine, 1856) for which three mechanisms have been
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proposed. The equinoctial hypothesis (Bartels, 1925, 1932;
McIntosh, 1959; Svalgaard, 1977) is governed by theψ an-
gle between the solar wind flow direction and the Earth’s
dipole axis. Under this hypothesis, activity maximizes (for
as yet unknown reasons) at the equinoxes whenψ is 90◦.
The key angle in the axial hypothesis (Cortie, 1912) is the
heliographic latitude of the Earth (BO ). In early March
and September the Earth is at its maximum angular distance
(∼7◦) from the solar equatorial plane and thus more closely
aligned with both the sunspot zones and coronal holes that
extend down from the solar poles. In the Russell-McPherron
mechanism (Russell and McPherron, 1973), magnetic fields
in the solar equatorial plane have a peak southward compo-
nent at the Earth in Geocentric Solar Magnetospheric (GSM)
coordinates in early April or October, depending on their po-
larity.

While all of these mechanisms contribute to the semian-
nual variation, their relative contributions have long been a
matter of debate (e.g. Mayaud, 1974a; Russell and McPher-
ron, 1974). Recently, various authors (Cliver et al., 2000,
2001, 2002; Lyatsky et al., 2001; Temerin and Li, 2002;
O’Brien and McPherron, 2002) have argued that the equinoc-
tial hypothesis plays a more important role vis-à-vis the
competing axial and (in particular) Russell-McPherron (RM)
mechanisms than has previously been thought to be the case.
Cliver et al. (2000) and Svalgaard et al. (2002) calculated
that, on average, the equinoctial hypothesis accounts for 65–
75% of the amplitude of the six-month wave in the geomag-
neticam index.

The present study does not deal with average conditions.
Occasionally, the semiannual variation of geomagnetic activ-
ity is so pronounced that one can readily identify the equinoc-
tial peaks and solstitial valleys in plots of daily averages of
geomagnetic indices during the year. The solar minimum
years of 1954 and 1996 were two such intervals. In this study
we ask why the six-month wave was so prominent during
these years. Our analysis is presented in Sect. 2 and the re-
sults are discussed in Sect. 3.
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Fig. 1. Plots of daily values of theaam index for (a) 1954 and(b)
1996.

2 Analysis

2.1 Selection of years

To identify years with a pronounced semiannual variation,
we used theaam index recently introduced by Svalgaard
et al. (2002). Theaam index is theaa index1 (Mayaud,
1972, 1980), available from 1868–1998, modified to have
the correct universal time variation. We correlated the di-
urnal/seasonal matrix (8× 12; 3 h, 1 month) ofaam values
for each of the 131 years with the equinoctial angle (ψ), the
Russell-McPherron angle (the angle between thez-axis in the
GSM coordinate system and the solar equatorial plane, mea-
sured in they − z (GSM) plane), and the axial angle (BO ).

1Theaa index is a mid-latitude range index based on maximum
excursions of the horizontal (H ) or declination (D) components of
the field over a 3-h interval after removing the regular variation
(SR). aa is based on two nearly-antipodal stations in England and
Australia; because the stations are not exactly antipodal, the UT-
dependence is distorted, hence, the correction as described.

Fig. 2. Diurnal/seasonal variation of theaam index during 1996.

Because of the∼11◦ offset of the Earth’s dipole axis to the
rotation axis, both the equinoctial and Russell-McPherron
mechanisms produce a Universal Time variation (UT), as
well as seasonal variation, while the axial effect has no UT
dependence. From 1868–1998, 37 indiviudal years hadaam-
ψ angle correlation coefficients≥ 0.5, in comparison with 9
such years forBO and only 4 years (≤ −0.5) for the RM an-
gle. We selected for further analysis the only two years that
had numeric correlation coefficients≥ 0.5 in all three in-
dices: 1954 (r = 0.66(ψ); r = −0.50(RM); r = 0.59(BO))
and 1996 (r = 0.70(ψ); r = −0.51(RM); r = 0.56(BO)).
Our technique thus identified years that had strong semian-
nual variations that could be plausibly accounted for in terms
of any one, or a combination, of the three classic modulation
hypotheses. Figure 1a and b give plots of daily values ofaam
for 1954 and 1996, respectively. In both cases, the six-month
wave in geomagnetic activity is readily discernible.

2.2 Origins of the semiannual variation of geomagnetic ac-
tivity in 1996

2.2.1 ψ-angle normalization

A diurnal/seasonal plot of theaam index for 1996 is given
in Fig. 2. To remove the contribution from the equinoc-
tial mechanism, we follow the procedure of Svalgaard et
al. (2002) (see also O’Brien and McPherron, 2002) and
multiply aam by 0.864 (1+ cos2ψ)2/3 to obtain theψ-
normalizedaam0 index. Figure 3 gives plots of monthly
averages of (a) southward magnetic field (BS , in GSM co-
ordinates), (b) solar wind speed (v), (c) theaam index, and
(d) theaam0 index for 1996. An FFT analysis of theaam
andaam0 indices shows that theψ-normalization removes
only ∼35% of the amplitude of the second harmonic (given
in the figure) vs. the 65–75% figure obtained by Cliver et
al. (2000) and Svalgaard et al. (2002) for the contribution
from the equinoctial effect.
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Fig. 3. Monthly averages for 1996 of
(a) southward magnetic field (Bs ), (b)
solar wind flow speed (v), (c) aam in-
dex,(d) “observed”aam0 index,(e)cal-
culatedaam0 index (from Eq. 1;C =

7.551× 10−5,DO = 6.554), and(f)
calculatedaam0 index with solar wind
flow speed (v) held constant at its yearly
average of 421km s−1. The average
value (0th harmonic) and coefficient of
the 2nd harmonic of each parameter are
given in the right-hand margin.

2.2.2 Contributions from the Russell-McPherron and axial
mechanisms

The semiannual variations ofBS (Fig. 3a) andv (Fig. 3b) in-
dicate that both the Russell-McPherron effect and the axial
effect contribute to the six-month wave inaam0. To sepa-
rate and quantify these contributions, we obtained the fol-
lowing relationship between monthly averages ofaam0 and
solar wind parameters for 1996, assuming the standard func-
tional form between these variables deduced by various au-
thors (e.g. Feynman and Crooker, 1978)

aam0 = 7.551× 10−5v2BS + 6.554. (1)

Figure 3e shows thataam0 (calculated from Eq. 1) has an
average value and second harmonic coefficient that are com-
parable to those for the observedaam0 (Fig. 3d). To obtain
Fig. 3f, the value ofv was held constant at the 1996 annual
average of 421km s−1, thereby removing the axial solar wind
speed contribution to the semiannual variation. The remain-
ing ∼50% (0.83/1.77) of the semiannual variation ofaam0
is attributed to the Russell-McPherron effect. (An essen-
tially identical result is obtained by holdingBS constant.)
Approximately equal contributions for the axial and Russell-
McPherron effects are consistent with correlations of the di-
urnal/seasonal matrix ofaam0 with BO(r = 0.50) and the
RM angle (r = −0.47). Thus, we conclude that for 1996,

all three of the classic modulation mechanisms contributed
about equally to the six-month wave in theaam index.

2.2.3 Causes of the enhanced Russell-McPherron and axial
contributions

The Russell-McPherron mechanism assumes that the inter-
planetary magnetic field measured at the Earth is equally
likely to be pointed inward or outward during the year. For
long intervals this is a good assumption, e.g. for the 1963–
2000, we find thatBX is positive (negative) 50.4% (49.6%)
of the time. For shorter intervals of time, however, the po-
larity mix can deviate from parity. In particular, for peri-
ods near solar minimum when the heliospheric current sheet
(HCS) lies close to the solar equator, the Earth can find itself
preferentially in one polarity or the other for six month in-
tervals as it ranges between∼7◦ N and∼7◦ S in heliospheric
latitude. Rosenberg and Coleman (1969) were the first to
draw attention to this axial polarity effect. The Rosenberg-
Coleman polarity effect is evident in 1996. During this year,
the solar wind polarity was biased negative (inward) during
the first half of the year and positive (outward) during the
second half (Fig. 4), circumstances under which the Russell-
McPherron coordinate transformation from Geocentric Solar
Equatorial (GSEq) to GSM coordinates yields a southward
pointing magnetic field component. In all, the magnetic po-
larity at the Earth was favourable for 63% of all hours during
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Fig. 4. Solar wind magnetic polarity distribution (5-day averages)
at the Earth during 1996. Fields with positive (negative)Bx are di-
rected toward (away from) the Sun. The dashed vertical lines indi-
cate mimima (favourable polarity cross-over times) for the Russell-
McPherron effect. The dashed horizontal lines give average per-
centages of the timeBx is positive for intervals bounded by these
crossings (the second interval is truncated on 31 December). Note
thatBx has the opposite sign of the solar/solar wind magnetic po-
larity.

1996, vs. the∼50% long-term average, indicating a Russell-
McPherron effect that was theoretically∼25% stronger than
usual. Comparison of the coefficients of the second harmon-
ics in FFT analyses ofBs for 1996 (0.62) and the interval
1963–2000 (0.38) indicates an actual increase of∼60%.

Figure 5 shows the evolution of the “tilt angle” (Smith and
Thomas, 1986) of the HCS during the period from 1990–
2000. The tilt angle is obtained from computed coronal mag-
netic field maps of the Wilcox Solar Observatory at Stanford
University (Hoeksema, 1989) by averaging the maximum lat-
itudinal excursions (north and south) of the coronal neutral
line during each Carrington rotation. The low tilt angles dur-
ing 1996 indicate that the Sun’s “magnetic equator” is more-
or-less aligned with its heliographic equator. During these
solar minimum conditions, high-speed streams from polar
coronal holes reach relatively low latitudes (as revealed by
Ulysses, Bame et al., 1993; Phillips et al., 1995; see also
Hundhausen, 1977) and are more likely to intercept the Earth
at its maximum excursions north and south of the solar equa-
tor. Bohlin (1977) was the first to point out that this axial
effect on high-speed streams from coronal holes could con-
tribute to the semiannual variation of geomagnetic activity
(Fig. 6 from Bohlin, 1977).

2.2.4 Contribution from the evolution of coronal holes dur-
ing 1996

In the analysis in Sect. 2.2.2, we assumed that the source of
the solar wind is constant during the year and that all wind
speed variation (Fig. 3b) is due to the Earth’s annual excur-

Fig. 5. Evolution of the “tilt angle” of the heliospheric current sheet
from 1990–2000. The dashed vertical lines bracket 1996.

sion in heliographic latitude. Examination of coronal hole
maps based on He 10 830 observations from Kitt Peak (Na-
tional Solar Observatory website) and derived coronal hole
maps provided by C. N. Arge (private communication, 2002)
based on a potential field source surface model and a cur-
rent sheet model (Arge et al., 2002) generally validates this
assumption. High-speed streams during the first half of the
year appear to originate exclusively in the south polar coro-
nal hole, while the most prominent period of high-speed flow
during the second half of the year (11–23 September) is at-
tributed to the north polar coronal hole. Non-polar coronal
holes do play a more important role in the second half of
the year, however. For example, the “Elephant’s Trunk” po-
lar coronal hole extension (identified during the Whole Sun
Month (8 August – 10 September) campaign; Galvin and
Cole, 1999; Zhao et al., 1999) and its remnants contributed
to geomagnetic activity around the fall equinox.

2.3 Origins of the semiannual variation of geomagnetic ac-
tivity in 1954

A diurnal/seasonal plot of theaam index for 1954 is given
in Fig. 7. For this year, the coefficient of the second har-
monic for theaam index is larger than was the case for 1996
(3.81 vs. 2.73; see Fig. 1). Normalizing the 1954aam data
for theψ angle to obtainaam0 removes∼25% of the ampli-
tude of the six-month wave (0.92/3.81). Because solar wind
data are unavailable for 1954, we were unable to apportion
the six-month wave inaam0 between the Russell-McPherron
and axial wind speed effects. There is no compelling evi-
dence to suggest that one or the other is dominant, however.
Correlating the 8×12 diurnal/seasonal variation plot ofaam0
for 1954 with the Russell-McPherron andBO angles yields
r = −0.49 andr = 0.59, respectively (statistically identi-
cal).

Using Eq. (1), we reproduced the amplitude of the six-
month wave inaam0 values observed for 1954 by artificially
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Fig. 6. Schematic showing how high-speed streams from polar
coronal holes can contribute to the semiannual variation of geomag-
netic activity via an axial effect (after Bohlin, 1977).

increasing the amplitude of the six-month wave in eitherv or
Bs data from 1996 (by increasing monthly averages of these
parameters by a fixed percentage (5% forv, 10% forBs) dur-
ing the six equinoctial months and decreasing them by the
same percentage during solstitial months) and using monthly
observed values from 1996 for the other parameter. Since the
enhanced amplitudes of the semiannual variations inv orBs
that were required to model the semiannual variation inaam0
were within the ranges of variability of these parameters for
recent solar cycle decline/minimum epochs, there is no rea-
son to suspect that the mechanisms giving rise to the strong
six-month wave inaam0 in 1954 were qualitatively different
from those (i.e. the axial wind speed and Russell-McPherron
effects) acting in 1996.

Svalgaard (1972) introduced a polarity index of the inter-
planetary magnetic field based on diurnal patterns observed
in ground-based polar magnetograms. Basically, a day is
classified as having toward (away) polarity if the vertical
component of the magnetic field at a near pole station has
a broad, positive (negative) perturbation between magnetic
noon and local noon. A third “mixed” classification is used
for days that do not fit neatly into either the toward or away
groups. If we count mixed polarity days as half favourable
and half unfavourable, we find that, similarly to 1996, 62%
of all days during 1954 had a favourable Russell-McPherron
polarity (Fig. 8). Power spectral analysis of theaam data in
Fig. 1a yields a strong peak at 27 days, indicating persistent
recurrent storms (see Tandon, 1956), and solar eclipse obser-
vations at mid-1954 (Fig. 9, taken from Vsekhsvjatsky, 1963;
see also Schatten et al., 1978) reveal a streamer belt (base of
the HCS) aligned with the solar equator.

2.4 The semiannual variation of geomagnetic activity in
1954 and 1996 and the 22-year variation of geomag-
netic activity

The “halfwave rectifier” nature of the magnetosphere
(Arnoldy, 1971; Burton et al., 1975) implies that geomag-

Fig. 7. Diurnal/seasonal variation of theaam index during 1954.

netic activity will be enhanced via the Russell-McPherron
effect when the Rosenberg-Coleman polarity effect produces
enhanced positive polarity in spring and negative polarity in
fall. Due to solar polarity reversal every 11 years at solar
maximum, such conditions occur at alternate solar minima,
contributing to an observed 22-year variation in geomagnetic
activity (Chernosky, 1966; Cliver et al., 1996). This explana-
tion for the 22-year geomagnetic cycle was first pointed out
by Russell and McPherron (1973). The years 1954 and 1996
are separated by∼2 × 22 years and are thus a manifestation
of this periodicity.

3 Summary and discussion

We have examined the cause of the semiannual variation of
geomagnetic activity for two solar minimum years in which
the six-month wave is apparent in daily averages of theaam
index. During these years, both the Russell-McPherron and
axial mechanisms make much larger contributions (each ac-
counting for∼33% of the total) to the semiannual variation
than usual. For comparison, Cliver et al. (2000) and Sval-
gaard et al. (2002) found that, in general, these two mech-
anisms combined contribute only∼30% to the six-month
wave, with the remainder due to the equinoctial effect.

3.1 What was different about 1954 and 1996?

Years such as 1954 and 1996 with strong, well-defined semi-
annual variations are rare, with only these two years out of
131 meeting our selection criteria (Sect. 2.1). What was un-
usual about these years? As seen in Figs. 4 and 8 the solar
wind polarity, rather than being more or less evenly mixed
throughout the year, as it is in long-term averages, was pref-
erentially inward in spring and outward in fall, circumstances
that favour the creation of a southward field in the GSM co-
ordinate system under the Russell-McPherron effect. The
preference for one solar magnetic field polarity during the
first half of the year and the other during the second half is
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Fig. 8. Monthly solar wind magnetic polarity indices (Svalgaard,
1972) for 1954. A polarity was judged to be dominant during a
month if it occurred for> 50% of the days. The dashed vertical
lines indicate minima for the Russell-McPherron effect. Toward
and away is with reference to the Sun.

an axial polarity effect discovered by Rosenberg and Cole-
man (1969). It occurs during solar minimum years such as
1954 and 1996, when the heliographic equator and streamer
belt are closely aligned (Figs. 5 and 9). At these times, the
Earth will tend to sample one solar wind polarity when its
heliographic latitude is positive and the opposite polarity for
negative latitudes. Because the Sun reverses polarity every
11 years, the favourable polarities for the Russell-McPherron
effect (inward in spring and outward in fall) occur at alter-
nate solar minima. Thus, the combination of the Rosenberg-
Coleman and Russell-McPherron effects contribute to the
observed 22-year cycle of geomagnetic activity (Chernosky,
1966; Russell and McPherron, 1973; Cliver et al., 1996), and
the strong semiannual variation in 1954 and 1996, separated
by∼2×22 years, is a reflection of the 22-year solar magnetic
cycle.

The semiannual variation of geomagnetic activity in 1996
also benefited from a stronger than usual solar wind speed
variation. The value of∼18km s−1 we find for the coef-
ficient of the second harmonic of the solar wind speed for
1996 (Fig. 3b) compares with∼3km s−1 for the 1963–1997
interval. A comparably enhanced (to 1996) six-month wave
in solar wind speed is inferred for 1954. We attribute the
semiannual variation in solar wind speed during 1954 and
1996 primarily to an axial effect involving the Sun’s polar
coronal holes (Bohlin, 1977). The quasi-alignment of the he-
liomagnetic and heliographic equators at solar minimum en-
ables the Earth to access high-speed streams from alternate
polar coronal holes on its excursions to∼7◦ N (S) heliolati-
tude in September (March) (Fig. 6).

Four other solar minimum years (McKinnon, 1987) with
favourable Rosenberg-Coleman polarity occurred during the
1868–1998 interval for which we haveaam data: 1889, 1913,
1933, and 1976. None of these years satisfied our selection

Fig. 9. Observation of the solar eclipse of 30 June 1954 (Vsekhsv-
jatsky, 1963) showing the alignment of streamers with the solar
equator.

criteria based on correlations of theaam data with the key
angles in the axial, Russell-McPherron and axial hypotheses.
Correlation coefficients obtained were as follows:
1889 (r = 0.44(ψ); r = −0.25(RM); r = −0.02(BO));
1913 (r = 0.48(ψ); r = −0.43(RM); r = 0.23(BO));
1933 (r = 0.52(ψ); r = −0.52(RM); r = 0.16(BO));
1976 (r = 0.59(ψ); r = −0.35(RM); r = 0.37(BO)).

We note that the correlation coefficients for the Russell-
McPherron mechanism for these four years are high in com-
parison with all individual years from 1868–1998, ranking
63rd, 9th, 2nd, and 23rd, respectively. Differences in the
degree of correlation with the three angles between the six
favourable polarity minima are attributed to the vagaries of
solar activity that can disrupt (or enhance) the seasonal-UT
patterns of the geometry-based drivers of the semiannual
variation.

3.2 The Rosenberg-Coleman effect

When considering the axial effect, one generally thinks
of sunspot fields/magnetic field strength (Cortie, 1912) or
coronal holes/solar wind speed (Bohlin, 1977) but not the
Rosenberg-Coleman polarity effect. As first noted by Rus-
sell and McPherron (1973), however, this semiannual varia-
tion can play an important role at alternate solar minima.

A comparison of the six favourable (1889, 1913, 1933,
1954, 1976, and 1996) and six unfavourable (1878, 1901,
1923, 1944, 1964, and 1986) minimum years in theaam data
set highlights the interplay of the Rosenberg-Coleman effect
and the Russell-McPherron mechanism. For the average of
the favourable years, correlation coefficients for the three hy-
potheses are as follows:r = 0.76(ψ); r = −0.56(RM); r =

0.48(BO). Corresponding coefficients for the unfavourable
years are:r = 0.60(ψ); r = −0.16(RM); r = 0.44(BO).
The clear difference in the correlations with the RM angle
contrasts with the relatively small differences forψ andBO ,
for which the responsible mechanisms are unaffected by the
Sun’s polarity reversal.
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3.3 Excitation/modulation and external vs. internal sources
of the semiannual variation

Mayaud (1974a) distinguished between excitation and mod-
ulation mechanisms for the semiannual variation. Excita-
tion mechanisms include the axial and Russell-McPherron
effects which increase solar wind speed and southward field
strength, respectively, at the equinoxes. In comparison, the
equinoctial mechanism is thought to modulate the response
of the magnetosphere to the solar wind input by reducing
energy transfer at the solstices (Crooker and Siscoe, 1986).
Cliver et al. (2000) used a “mountain building” vs. “valley
digging” metaphor to illustrate the difference between exci-
tation and modulation mechanisms.

Recently, Lyatsky et al. (2001) have suggested that nei-
ther the amount of energy incident on the magnetosphere as
in the axial and Russell-McPherron effects, nor the amount
transferred to the magnetosphere via the equinoctial effect,
is primarily responsible for the semiannual variation. Rather,
they argued that the internal response of the system, based on
the conductivity of the ionosphere in the polar regions, is the
key factor. Because the variation of ionospheric conductiv-
ity at any point on the Earth is governed by the solar zenith
angle, the equinoctial hypothesis is the only one of the three
classic hypotheses that could produce a conductivity pattern
compatible with the pattern of geomagnetic activity apparent
in Fig. 2. Lyatsky et al. (2001) showed that a diurnal/seasonal
plot of the solar zenith angle for the midnight auroral oval of
the more sunlit hemisphere had similar contours to that of the
ψ angle and theam index.

One argument in favour of the coupling efficiency
equinoctial hypothesis (vs. an equinoctial-based conductiv-
ity variation) is the fact that the peak and minimum phases of
average geomagnetic activity are shifted∼5 days later than
their theoretically predicted values (e.gṗeak averageaa oc-
curs on 27 March and 27 September (±2 day uncertainty)
rather than on 21 March and 23 September) (Cliver et al.,
2002). This delay has been interpreted by Mayaud (1974b)
as an aberration effect due to the Earth’s orbital motion. If
the seasonal variation was driven primarily by a conductiv-
ity effect, one would expect the peak phase to occur at the
“unaberrated” equinox.

3.4 Maximum size of the equinoctial effect

For both 1954 and 1996, theψ-angle normalization removed
∼1 nT from the coefficient of the second harmonic in an
FFT analysis of monthly values ofaam. In fact, applying
this normalization to a perfectly flat diurnal/seasonal pattern
for this index (with an amplitude of 19.3 nT corresponding
to the average value ofaam from 1868–1998) results in a
coefficient of∼1 nT (vs. 1.26 nT for the actualaam matrix
for this interval). Thus, any value for the second harmonic
coefficient ofaam greater than∼1 nT (for an annual aver-
age∼19 nT), as observed for 1954 (3.8 nT; annual average =
17.2 nT) and 1996 (2.7 nT; annual average = 18.5 nT), indi-
cates contributions from other factors, such as the axial and

Russell-McPherron mechanisms or randomness in solar ac-
tivity. Over the long run of data, from 1868-present, these
other factors are only of secondary importance, as evidenced
by the close fit of the diurnal/seasonal pattern of geomag-
netic activity to that predicted by the equinoctial hypothe-
sis (McIntosh, 1959; Svalgaard, 1977; Cliver et al., 2000)
and various calculations (e.g. Berthelier, 1976; Cliver et al.,
2000; Svalgaard et al., 2002), indicating the dominance of
the equinoctial effect.
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